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Abstract

Understanding the mechanics behind knee joint injuries and providing appropriate treatment

is crucial for improving physical function, quality of life, and employability. In this study, we

used a hybrid molecular dynamics-finite element-musculoskeletal model to determine the

level of loads the knee can withstand when landing from different heights (20, 40, 60 cm),

including the height at which cartilage damage occurs. The model was driven by kinemat-

ics–kinetics data of asymptomatic subjects at the peak loading instance of drop landing. Our

analysis revealed that as landing height increased, the forces on the knee joint also

increased, particularly in the vastus muscles and medial gastrocnemius. The patellar tendon

experienced more stress than other ligaments, and the medial plateau supported most of

the tibial cartilage contact forces and stresses. The load was mostly transmitted through car-

tilage-cartilage interaction and increased with landing height. The critical height of 126 cm,

at which cartilage damage was initiated, was determined by extrapolating the collected data

using an iterative approach. Damage initiation and propagation were mainly located in the

superficial layers of the tibiofemoral and patellofemoral cartilage. Finally, this study provides

valuable insights into the mechanisms of landing-associated cartilage damage and could

help limit joint injuries and improve training programs.

Introduction

High degrees of physical activity, such as drop landing, may lead to acute joint injury, espe-

cially if it is associated with elevated height. The joint alteration, including significant liga-

ments and cartilage damage, ultimately leads to degenerative joint disease such as

osteoarthritis (OA) and, consequently, joint failure [1]. Understanding landing joint loading

to prevent soft tissue damage is important but not well-defined. We argue that the develop-

ment of such a concept can best be accomplished by understanding the relationship between

external loading and the basic molecular structure of soft tissue, starting at the fibril level.

Identifying the nature of the connection between damage at the fibril level, defined here as
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micro-defects, and soft tissue loading can help elucidate the biochemical and mechanical inter-

actions between aggregate landing loading levels and acute joint injury. However, exploring

these interactions under experimental conditions in man or animals is technically prohibitive

[2]. Thus, computational biomechanical modeling is considered a vital complementary tool to

improve our knowledge of joint response.

Computational models associated with experimental measurements have previously been

used to estimate muscular and joint forces for a number of functional tasks, including drop

landing [3–14]. These models have numerous clinical applications as well as been widely used

in rehabilitation medicine. However, the current musculoskeletal models only consider whole-

body kinematics to describe the macro-mechanics without integrating the microscopic details

and the capacity of soft tissues [9]. This capacity has been well documented as mechanical fail-

ure states mainly depend on molecular characteristics [15]. At one extreme, the dynamic

molecular syntheses start from the amino acid molecule and limit to the smallest macro unity

of tissues (extracellular matrix) (e.g. [16]) and treat this unity as a load receptor, independent

of the actual macro-mechanics. At the other extreme, current multi-body inverse dynamic

simulations targeting muscles and joints loading, which use measured kinematics and ground

reaction forces as input (e.g. [9]), treat joints as kinematic constraints that undergo the same

motion irrespective of the external loading conditions. To date, the efficacy of such a study

regarding the ligaments and cartilage damage initiation and propagation was limited to in

vitro testing or macro sub-modeling tools [17]. Here, a paradigm shift in kinematics measure-

ment and musculoskeletal simulation by accounting for the interplay between skeletal dynam-

ics and micro internal joint mechanics, which is fundamental to addressing soft tissue

overusing injuries, degenerative joint disease, and osteoarthritis (OA), is missing.

An accurate understanding of soft tissue failure initiation could be comprehended by

simultaneously combining actual and extrapolated kinematics/kinetics measurements with a

multiscale computation paradigm that links the molecular foundation of the soft tissue to the

continuum level [3, 18]. Therefore, a hybrid computational framework linking three different

syntheses—molecular dynamics (MD), finite element analysis (FEA), and musculoskeletal

modeling was developed. This computational construct was used to evaluate critically the land-

ing biomechanics of the knee joint as a function of height, one of the most associated factors

with cartilage injury, as well as cartilage damage prediction. This evaluation may permit a bet-

ter understanding of the mechanisms underlying soft tissue damage initiation and its spatial

propagation.

Methods

i) Kinematics-driven model

A kinematics-driven musculoskeletal model of the lower extremity accounts for the hip and

ankle as spherical and hinge joints, respectively, and the knee as FE model, as well as their

active musculatures (34 muscles), was developed. The knee model was reconstructed from a

digitized MRI (OpenKnee public domain repository at Simtk.org) scanned at Cleveland Clinic

(Biomechanics laboratory) for 70 years female subject (Weight = 77 kg and Height = 170 cm)

using a Tesla extremity MRI scanner (Orthone, ONI Medical Systems-Inc, Wilmington-MA)

[11]. These image data were manually segmented and re-sampled in the anatomical planes

using 3D Slicer 4.8 (viewing and segmentation analysis package). Geometrical surface smooth-

ness, correction, and mesh generation were conducted via SolidWorks (SolidWorks Corp.,

Concord, MA, USA) and HyperMesh pre-processor (Altair Engineering, Troy, MI). The

geometry of the tibiofemoral joint was adjusted to align with the dimension reported in the

Simtk.org open knee public domain repository [11]. In the model, bones were represented as
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rigid bodies [19–23] utilizing shell elements (S4R), whereas articular cartilages, ligaments, and

menisci were depicted through reduced integration brick elements (C3D8R), as shown in Fig

1. Details of the knee model were presented in the S1 File and our prior works [24–27].

ii) Constitutive models of the soft tissue

a) Collagen mesoscopic model. The purpose of the MD simulation is to obtain the micro-

mechanical behavior of collagen fibrils. The simulations are based on a mesoscopic model pro-

posed by Buehler [29]. The concept of the mesoscopic model is to abbreviate the full molecular

geometry of the collagen molecule (consisting of three chains of amino acids and having a

diameter of about 1.6 nm and a length of about 300 nm) into a single chain of beads (or super

atoms) where each bead represents several atoms in the full atomistic model [16, 30–32]. This

approach allows molecular dynamics to reach time and length scales otherwise inaccessible by

simulating full molecular structures. The fibril is then built by replicating the above-described

molecule orthogonally to its principal axis [33] in a quasi-hexagonal array where each group of

5 molecules packs together to form a microfibril. In the present work, we assumed a fibril

diameter of 21.5 nm containing 151 molecules. The formulation of the coarse-grained model

of collagen molecules was implemented in several studies [31, 34, 35] and was proven to accu-

rately mimic the actual behavior of the fibril. The force field is governed by three main energies

as follows:

Einter ¼ 4ε
s

r

� �12

�
s

r

� �6
� �

Ebond ¼

(
KT0

2
r � r0ð Þ

2
þ C1 ; r < r1

KT1

2
r � �r1ð Þ

2
þ C2 ; r1 < r < rb

0 ; r > rb
Eangle ¼ Ky y � y0ð Þ

2

ð1Þ

8
>>>>>>>>>>>>>>><

>>>>>>>>>>>>>>>:

Where Einter, σ, and ε represent, respectively, the interatomic energy, characteristic distance,

and the minimum energy of the Lennard Jones potential. Ebond, KT0, and KT1, are the bond

energy and spring constants, respectively, r1, �r1 , rb are the distances of the hyper-elastic behav-

ior, continuity of the force field, and breaking bond, respectively. Eangle and Kθ are the angular

energy and the bending strength, respectively, θ0 and θ are the equilibrium and actual angle

between the three consecutive beads. Enzymatic crosslinks are then added to the fibril model

by bonding telopeptides and helical residues from adjacent molecules. The coefficient β repre-

sents the density of molecule ends that are connected to beads from other molecules (a coeffi-

cient β = 100% corresponds to 2 connected ends per molecule). The fibril model was created

using MatlabR2021A by averaging the geometric positions of the atoms in the 3HR2 PDB

(Collagen I) entry and replicating the molecule in the radial directions. All MD simulations

were performed using LAMMPS molecular dynamics software [36] (Fig 1). Additional details

about the developed model can be found in the S1 File and our prior works [18, 24, 37, 38].
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b) Cartilage. To simulate collagen fibril behavior, a nonlinear constitutive modeling

approach developed by Sajjadinia et al., [39] in which the stress of the fibril can be defined as:

s
f
i ¼

Zs
0

J
lnεf E0εf þ Eεε

2

f

� �
ðn� nÞ

� �

i

εfi � 0

s
f
i ¼ 0 εfi ≼ 0

ð2Þ

8
><

>:

Where n and εf are the current direction and logarithmic strain of the fibril, respectively. E0

and Eε are the collagen stiffening coefficients (initial and strain-dependent) and Zs
0

is a depth-

dependent elastic material parameter. The collagen networks were categorized into primary

and secondary bundles (i) of fibrils, based on their orientation in relation to the depth of the

articular cartilage. The primary fibrils were aligned perpendicular to the subchondral junction

and gradually rotated in the middle zone to become parallel to the articular surface. The inte-

gration of the fibril stress equation with respect to strain in its axial form led to the strain-

energy function (Wfl) [40]. The softening hyperelasticity approach for modeling nonlinear

materials failure [40–43] has been considered in this work to unify the nonlinear elasticity

with plastic (failure) descriptions. The softening of the fibrils was captured by a constant Ф
(energy limiter) [44–46]. Thereafter, the strain energy function of the fibril is modified with the

inclusion of the energy limiter and takes the following form:

c Φ;Wfl

� �
¼

Φ
m

Γ
1

m
; 0

� �

� Γ
1

m
;
Wm

fl

Φm

� �� �

ð3Þ

Fig 1. The adopted workflow includes a 3D finite element model of the knee viewed from the anterior (i) and posterior (ii) perspectives. (1) Prescribed joint

rotations and GRF, (2) Computing joint reaction moments and muscle moment arms, (3) estimated muscle forces and applied as surface tractions [28], (4) Computing

joint stress and updated reaction moments. For more information regarding the system of axes, joint center calculations, and muscle characteristics, please refer to [9,

28].

https://doi.org/10.1371/journal.pone.0287479.g001
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where Γ is the upper incomplete gamma function expressed as Γðs; xÞ ¼
R1
x t

s� 1exp ð �
tÞdt; Wfl is the strain energy of the intact (without failure) fibril, and the dimensionless mate-

rial parameterm controls the sharpness of the transition of material softening. Differentiating

the modified strain energy [47] yields the following fibril stress under uniaxial tension,

s
fl
i ¼ s

f
i exp �

Wm
fl

Φm

� �

ð4Þ

The cartilage was modeled with incompressible hyperelastic behavior, strengthened by the

newly developed continuum-damage model of the fibril. The Cauchy stress (σc) in the used

model was decomposed into a non-fibrillar (σnf) and fibrillar (s
fl
i ) parts as follow:

sc ¼ vfsfl þ 1 � vtð Þsnf

snf ¼ Zs
0
�
lnJ
6J
Gm

3Zs
0
lnJ

Zs
0
� 1
� 3

J þ Zs
0

J � Zs
0

� 1

� �

I þ
Gm
J
FFT � J2=3I
� �

� �

þ
1

D
ðJ � 1Þ

2

s
fl
i ¼ s

f
i exp �

Wm
fl

Φm

� �

εfi � 0

s
fl
i ¼ 0 εfi≼0

ð5Þ

8
>>>>>>>>><

>>>>>>>>>:

Here, F represents the deformation gradient tensor, and J represents the volumetric defor-

mation. Gm is the shear modulus and vf is the relative collagen fibril volume fraction. Based on

a 30% reduction of stiffness of collagen II compared with collagen I and the similarity of a non-

linear trend reported in certain experimental and theoretical investigations [48–50], the

parameters driving the fibril response of the articular cartilage were calculated by fitting them

to 70% of the predicted MD simulation results (Collagen Mesoscopic Model). The rest of the

parameters were fixed based on the earlier investigation of Sajjadinia et al., [39]. For further

information on the material formulation, please refer to the S1 File and previous publications

[39, 51]. A list of the properties of the material is presented in Table 1.

c) Meniscus. A specific class of materials, transverse isotropy, was used to represent the

aggregate behavior of the meniscus [23, 49, 52–54]. Three axes (axial, transversal,

Table 1. Articular cartilage materials properties obtained from MD fitting and earlier investigation of Sajjadinia

et al., [39].

Material parameters

E0(MPa): Initial collagen coefficients 8.121

Eε(MPa): Strain-dep collagen coefficients 5326.32

ϕ: Energy limiter 82.326

m: dimensionless material parameter 12

Gm (MPa): Shear modulus 0.723

vf: Collagen fibril volume fraction1 vt 3

13
or vt 1

13

vt: Total depth-dependent collagen volume fraction2 1.4Z2 – 1.1z + 0.59

ηs
0: Elastic material parameter 0.1z + 0.1

D: Incompressibility penalty parameter 0.0001

1 3

13
and 1

13
for the primary and the secondary fibril, respectively.

2z: The depth of the articular cartilage, measured from the junction of the cartilage and bone and normalized

accordingly.

https://doi.org/10.1371/journal.pone.0287479.t001
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circumferential) were defined to identify the local material orientation considering the isot-

ropy of the transverse-axial plane. As a result, the stiffness matrix linking meniscus stress-

strain was described as follows:

ε11

ε22

ε33

g12

g13

g23

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

¼

1=Et � Wct=Et � Wta=Ec 0 0 0

� Wct=Et 1=Et � Wta=Ec 0 0 0

� Wta=Et � Wta=Et 1=Ec 0 0 0

0 0 0 1=G 0 0

0 0 0 0 1=G 0

0 0 0 0 0 1=G

2

6
6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
7
5

s11

s22

s33

s12

s13

s23

8
>>>>>>>>>><

>>>>>>>>>>:

9
>>>>>>>>>>=

>>>>>>>>>>;

ð6Þ

Where EC is the circumferential modulus, Et and Ea are transverse and axial modulus (Et =
Ea), respectively, νct and νca are the Poisson’s ratio, which is defined as the ratio of the contrac-

tile strain in the transverse plane to the tensile strain in the circumferential direction under the

load in the circumferential direction (νct = νca), νta is the Poisson’s ratio within the transverse

plane and G is the shear modulus. A list of the properties of the material is presented in

Table 2.

d) Ligaments. Ligaments pre-strains. The total deformation gradient was decomposed

into the reference (F) and stress-free states (F0) in which the ligaments pre-strains were intro-

duced via initial stretch (α0) as follows,

F0 ¼

a0 0 0

0
ffiffiffiffiffi
a0

� 1
p

0

0 0
ffiffiffiffiffi
a0

� 1
p

2

6
4

3

7
5 ð7Þ

For more details about the considered initial stretch, please see our recent publication [55].

Ligaments model. The patellar tendon and ligaments were considered as a homogenized

continuum set of elements with a hierarchical concept of fibrils and fiber reinforcement. This

concept assumes an incompressible hyper-elastoplastic behavior with a plastic flow associated

with the uniaxial tension of the collagen fibrils. Therefore, the total deformation gradient ten-

sor was decomposed into elastic and plastic parts (�F ¼ �Fe�Fp) with the following invariants

�I le ¼ tr �Ce ¼
�F e

�FT
e

� �
and �I 4e ¼ no�Cento;�I 1ef ¼

�I 4 þ 2�I � 1=2

4 with C is the Cauchy-Green

tensor and no is the initial orientation of the collagen fibril [56, 57]. Then, a mixed pyramidical

formula was employed, in which the collagen fiber reinforced the ligaments, and the fibril rein-

forced the fiber itself. As a result, the total strain energy density combining an extension (e)

and shear (s) behavior is given by:

ct
�I 1f ;

�I 4;
�I 4e

� �
¼ vfcfi �I 1f ;

�I 4;
�I 4e

� �
þ vm

mm
2

�I 1 � 3ð Þ
� �h i

e
þ

1

2
mm

1þ vf
� �

mefffb �I 4eð Þ þ mm 1 � vf
� �

1 � vf
� �

mefffb �I 4eð Þ þ mm 1þ vf
� � �I 1 �

�I 1f

� �
2

4

3

5

s

þcvolð
�JÞ ð8Þ

Table 2. Meniscus materials properties [55].

Ec (MPa) Et (MPa) vct vta Gt (MPa)

120 20 0.3 0.2 47

https://doi.org/10.1371/journal.pone.0287479.t002
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Where the fiber strain energy is given by:

cfi
�I 1f ;

�I 4;
�I 4e

� �

¼ vfbcfb �I 1ef ;
�I 4e

� �
þ vmb

mfm

2
�I 1ef � 3
� �� �h i

t

þ
1

2
mfm
ð1þ vfbÞmfbð�I 4eÞ þ m0ð1 � vfbÞ
ð1 � vfbÞmfbð�I 4eÞ þ m0ð1þ vfbÞ

�I 1e �
�I 1ef Þ

� i

s
ð9Þ

"

And the fibril strain energy is given by:

cfb
�I 1e;

�I 4eð Þ ¼
1

2
mo tanh a1

�I 4e � 1ð Þð Þ þ a2 exp a3
�I 4e � Ioð Þð Þð Þ �I 1ef � 3

� �
ð10Þ

Where μo, Io, and ai, represent the shear modulus, secondary stiffening, and the dimension-

less parameters of the fibril model, respectively.μfm,μm, vmb, vm, vfb, and vf are the shear moduli

of the fiber and tissue matrices, the volume fraction of the fiber and tissue matrices, and the

volume fraction of the fiber and the fibrils, respectively. Under the constraints of soft tissue

incompressibility and Clausius-Duhem dissipation inequality, the total stress (σt) of soft tissue

was characterized by fibrillar σf and nonfibrillar σnf stress tensors, as shown below.

st ¼ snf þ sf

snf ¼
2

J
�I 1

@ct
@�I 1

devð�BÞ þ Ek�Jð�J � 1Þð ÞI
� �

sf ¼
2

J
�I 4

@ct
@�I 4

devðn� nÞ þ �I 4e
@ct
@�I 4e

dev ne � neð Þ

� �

if �I 4 j> 1

sf ¼ 0 if �I 4 j� 1

ð11Þ

8
>>>>>>>>><

>>>>>>>>>:

The stress-strain function of the fibrils drove the elasto-plastic behavior using the single

crystal plasticity model under the Karush-Kuhn-Tucker loading/unloading constraint [58–

60]. This stress-strain function was obtained from our MD simulations results (Collagen

Mesoscopic Model). Fibril parameters were fixed based on the output of the MD simulation,

and the rest of the ligaments and tendon parameters were calibrated using a statistical

approach to fit the aggregate mechanical response of the soft tissues [24]. Additional details of

the developed model can be found in the S1 File and our prior works [18, 24, 61].

iii) Muscles optimization

The lower extremity muscle forces ({x}) were optimized via a nonlinear static optimization

technique at the peak loading instance of the drop landing phase. Along with physiological

muscle limitations (muscle forces between the passive and total maximum active forces (Eq

14)), the main driver of this optimization was the joint equation of equilibrium (Eq 13), where

the sum of cubed muscle stresses was minimized as an objective function (Eq 12). The muscle

boundaries were determined by using a scaled musculoskeletal model that corresponded to
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the subject’s dimensions, which was utilized to construct the kinematics-driven model [9].

f xið Þ ¼
Xn

i

xi
PCSAi

� �3

ð12Þ

½R�fxg ¼ fMg ð13Þ

xp
n o

� fxg � xmaxf g ð14Þ

[M] are the required lower extremity joint moments computed at the peak loading instance

of the drop landing phase and xp, xmas, [R], PCSAi, xi are the passive and maximum compo-

nents of muscle force, lever arms matrix, physiological cross-sectional areas and force of mus-

cle i, respectively [9].

iv) Drop landing data and regression equations

A detailed search was performed to determine published journal articles reporting drop land-

ing with both legs (peer-reviewed in English) with a publication range between 1990 and 2021.

Irrelevant publications were initially excluded based on rapid screening of the title and

abstracts and second on a detailed inspection of the full text when the first screening provided

insufficient information. Finally, only 42 articles have been selected (_((((xxx))))_)[62–104].

The following criteria were considered during the selection process: (1) Investigation was per-

formed on healthy adult humans (14–38 yr.) (Table 3). (2) Subjects regularly drop with both

legs. (3) Drop height was reported. (4) Lower limb kinematics/kinetics at the peak of ground

reaction forces were reported.

To determine the kinematics/kinetics and ground reaction forces of supra-physiological

impact, also known as a large landing height analysis that is inaccessible via drop landing anal-

ysis, a regression relationship between landing height and these parameters were developed.

Here, the sagittal lower limb kinematics/kinetics and vertical ground reaction forces were con-

sidered dependent variables to the landing height (Fig 2). Nonlinear regression equations

involving power, exponential, and natural logarithmic were used to fit experimental data. A

strong regression relationship was identified by an R2 value near one (Table 4). The coupled

kinematics/kinetics (frontal-transversal planes) was excluded from the regression process due

to the low dependency of these parameters on the landing height [62, 80] (Fig 2). Hence, the

means of these parameters were used with different heights during the simulations. Finally, as

verification, similar output to experimental measurements [105] of a height of around 1 m of

these regression models was computed.

v) Loading and boundary conditions

The nonlinear regression models (sagittal) and the average of coupled data (frontal-transver-

sal) of hip-knee-ankle joints kinematics and kinetics (Fig 2 and Table 4) at the peak ground

reaction instance were used to drive the musculoskeletal model. First, the analyses were

Table 3. Relevant subjects’ information [62–104], data are presented as mean (standard deviation).

Age (years old) 22.9 (3.1)

Weight (kg) 66.2 (7.2)

Height (cm) 171.3 (5.4)

BMI (kg/m2) 22.4 (1.2)

https://doi.org/10.1371/journal.pone.0287479.t003
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performed at three different landing heights (20 cm, 40 cm, and 60 cm). Then, one additional

analysis treating cartilage damage initiation was performed based on a trial-error test

(height = 126 cm). The femur was immobilized in its instantaneous position, while the tibia

was subjected to prescribed joint rotations, and the patella was left unconstrained. To recreate

the joint reaction moments, the weight of the leg/foot and the ground reaction force were

applied, and the unknown muscle forces were calculated iteratively. The iteration was

Fig 2. Violin plot showing lower limb joints kinematics and kinetics data distributions with the dashed line

representing the mean value. (a) sagittal joints angles distributions for different drop landing heights, (b) sagittal

joints moments distributions for different drop landing heights, (c) frontal-transversal joints angles distributions, (d)

frontal-transversal joints moments distributions, (e) vertical GRF distributions for different drop landing heights (f)

Posterior-Medial GRF distributions, all collected at the peak loading instance based on experimental data.

https://doi.org/10.1371/journal.pone.0287479.g002

Table 4. Non-linear regression equations and corresponding regression coefficients obtained from experimental data measured at the peak loading instance of

drop landing analysis [62–104].

Dependent variables Regression equations Regression coefficients R2

a b

Hip flexion angle y = axb 3.3896 0.557 0.9418

Knee flexion angle y = aln(x) + b 14.769 -15.237 0.9082

Ankle dorsiflexion angle y = aebx 8.1108 0.0068 0.9811

Hip flexion moment y = axb 0.0096 0.7563 0.9486

Knee flexion moment y = axb 0.0699 0.3704 0.9129

Ankle dorsiflexion moment y = aln(x) + b 0.1086 -0.2315 0.9187

Vertical GRF y = axb 0.4468 0.542 0.9463

https://doi.org/10.1371/journal.pone.0287479.t004
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conducted based on applying muscle forces as additional external loads to the model; this

updated the optimization algorithm with residual reaction moments and muscle lever arms,

which resulted from passive resistance [3, 55, 106–108]. The convergence was achieved when

the required moments fell below 1 N.m (Fig 1). Matlab genetic algorithm and Abaqus quasi-

static analysis were used for the optimization. Please see our earlier publication [55] for more

details about the muscles optimization algorithm.

Results

As shown in Fig 3, the muscle forces in the quadriceps demonstrated a significant increase,

averaging 42%, when the height of the drop landing was raised from 20 to 60 cm and contin-

ued to increase by approximately 33% when the height was raised to the supraphysiological

level of 126 cm. The vastus intermedius and vastus lateralis were significantly more affected,

with their activity increasing by more than two-fold when exposed to a drop landing height of

126 cm. Furthermore, the medial hamstring (Semimembranosus (SM) and Semitendinosus

(ST)) was more activated in all simulated cases compared to the lateral one. The most activated

component in the hamstring was the biceps femoris long head (BLH), with peak activity of 1.4

BW at the supraphysiological height (Fig 3). Forces in gastrocnemius fascicles increased by

58% and 188% as the landing height increased from 20 cm to 40 cm and 126 cm, respectively.

As demonstrated in Fig 4, the loading of the patellar tendon displays a comparable pattern

to that of the quadriceps forces, with the maximum nominal stress of 31 MPa being reached at

Fig 3. Computed muscle forces for different drop landing heights at the peak loading instance. Quadriceps: Vastus

intermedius (VI), Vastus medialis (VM), Rectus femoris (RF), and Vastus lateralis (VL); Gastrocnemius: medial (MG)

and lateral (LG); Hamstrings: Semimembranosus (SM) and Semitendinosus (ST), Biceps femoris long and short head

(BLH, BSH).

https://doi.org/10.1371/journal.pone.0287479.g003
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a drop landing height of 126 cm. The anterior cruciate ligament (ACL) and posterior cruciate

ligament (PCL) have near nominal stresses throughout the simulated cases, with a slightly

higher value on the ACL side. Also, it can be observed that the stresses experienced by the lat-

eral patellofemoral ligament (LPL), medial patellofemoral ligament (MPL), and lateral collat-

eral ligament (LCL) were relatively low compared to the other ligaments. On the other hand,

the medial collateral ligament (MCL) was subjected to almost uniform loading across all drop

landing heights. In the majority of simulated scenarios, with the exception of the MCL, the

load on the ligaments was considerably increased by the impact of drop landing height. Nota-

bly, in the case of the ACL, the load more than doubled with a height increase of 106 cm from

its base level of 20 cm (Fig 4).

As a result of the modifications in muscle loading, a substantial tibiofemoral contact force

was calculated and transmitted through the tibial compartments via articular interactions

between the cartilage-cartilage (covered) and cartilage-meniscus (uncovered) regions (Fig 5).

This load peaked at 126 cm of the drop landing height with an uneven distribution amongst

the two compartments (lateral and medial), where a higher load has been detected on the

medial side after the height of 40 cm. Moreover, the proportion of contact forces transmitted

via cartilage was dominant in the tibiofemoral load transfer. Contact pressures (average) were

following the same trend as the contact forces. The patellofemoral (PF) joint contact force

increased substantially with the increase of the drop landing height (Fig 5). While the patellofe-

moral and tibiofemoral (TF) contact areas indicated almost a steady state trend after the 40 cm

height.TF contact stress distributions were shifted from the middle to the anterior zone and

from the lateral to medial compartment after the augmentation of the drop landing height.

The peak articular stress of 30.11 MPa was reached at the supraphysiological height (Fig 6).

The stress distribution on the PF joint was concentrated more on the lateral side with a maxi-

mum value of 34.24 MPa at 126 cm of height (Fig 7). Finally, model prediction indicated that

cartilage damage (plastic strain) was initiated at the maximum contact stress location on both

Fig 4. Computed ligament nominal stresses for different drop landing heights at the peak loading instance.

https://doi.org/10.1371/journal.pone.0287479.g004
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TF and PF joints (Fig 8). This damage was near the ACL and LPL footprints in the tibiofemoral

and patellofemoral joints.

Discussion

The focus of this study was to examine the impact of landing height, during the peak loading

stage of the drop landing phase, on the mechanical behavior of the knee joint and the failure

mechanisms of the articular cartilage. For this purpose, a computational construct connecting

a musculoskeletal model to an active/passive knee finite element model was developed. The

soft tissue damage models were incorporated into the knee FE model via MD simulation-

based collagen mesoscopic model. This computational model was established based on distinct

kinematics-kinetics data obtained from healthy individuals (_((((xxx))))_)[62–104]. As far as

we know, this is the initial investigation to explore the influence of drop landing height on the

active/passive reaction of the knee joint. The results validated our expectations, with muscles

and knee soft tissue loads varying considerably with height during the peak loading period of

the drop landing phase.

One of the aims of this investigation is to develop a framework that can help identify the

factors involved in the mechanisms of cartilage and soft tissue landing injuries. Landing is an

essential task involved in many functional and sports activities with the highest prevalence of

joint injuries, which even exceed 50% during some activities [99]. Most of these injuries hap-

pened at larger landing heights that are often infeasible to measure/determine via laboratory

experiments, primarily due to the safety of the human subjects. In addition, the currently

Fig 5. Computed tibiofemoral and patellofemoral contact forces for different drop landing heights at the peak

loading instance (cartilage-cartilage (covered) and cartilage-meniscus (uncovered) articular interactions).

https://doi.org/10.1371/journal.pone.0287479.g005
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adopted analyses cannot detect important variables of interest that govern tissue damage initi-

ation, such as stress and strain. Therefore, regression models were developed during this inves-

tigation to overcome the safety barriers to identify the lower limb kinematics/kinetics at the

most susceptible point of possible joint injury (peak ground reaction force). To determine the

variables of interest (stress and strain), the knee damage model was incorporated with the

musculoskeletal model and driven by the kinematics/kinetics regression models. In addition,

an iterative simulation technique was implemented to determine the height at which the carti-

lage damage was initiated. A 1-meter dropping height was considered the initial height with a

degraded increment of 20, 10, 5, and 1 cm to identify the critical landing height precisely. As a

result, the cartilage damage was detected first at 126 cm, considered the supra-physiological

dropping height. Finally, additional analyses have been conducted in this investigation at

lower dropping heights to understand better the factors involved in the impact injury

mechanism.

Following the apparent increase of the knee flexion moment and rotation with higher drop-

ping height (60 cm to 126 cm) (Fig 2), quadriceps muscle forces increased significantly by an

average of 33% (Fig 3). The computed larger load due to the quadriceps being less efficient in

generating flexion moments at higher flexion angles observed in the landing case at a higher

loading point [96]. Of the middle-quadriceps components, the intermedius muscle experi-

enced the most significant disturbance, with a 58% increase in activity observed. Conversely,

the rectus femoris exhibited no alterations with changes in landing height. This could be

explained by the inverse polyarticular role of the rectus, which is considered an extensor of the

Fig 6. The contact stress experienced by the articular surfaces of the tibial compartments during the peak loading

phase at various drop landing heights is presented using a consistent legend to facilitate easier comparisons.

https://doi.org/10.1371/journal.pone.0287479.g006
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Fig 7. Contact stress at patellar articular surfaces for different drop landing heights at the peak loading instance.

Consistent legend is employed to facilitate easier comparisons.

https://doi.org/10.1371/journal.pone.0287479.g007

Fig 8. Propagation of cartilage damage distribution (collagen plastic strain) at the supra-physiological loading condition (height = 126 cm).

https://doi.org/10.1371/journal.pone.0287479.g008
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hip and flexor of the knee joints. On the vastus side, the highest alteration has been observed

with lateralis components, where the force increased from 1.2 body weight (BW) in the lowest

dropping height to 2.8 BW in the supra-physiological dropping height. In addition to the knee

flexion moment, the augmentation of vastus lateralis activity may be attributed to its resistance

against abduction and internal moments during this particular phase [81].

The medial hamstring muscles, specifically the semitendinosus and semimembranosus,

experience significantly higher forces compared to the lateral hamstring muscles (biceps femo-

ris long head and biceps femoris short head) that were associated with the knee varus and hip

extension moments. Furthermore, these muscle activations were characterized by a larger acti-

vation level of the semimembranosus than the semitendinosus. On the external side of the

knee joint, a deferential activation was computed between the biceps femoris components in

which the biceps femoris long was much more dominant than the biceps femoris short head.

Here, the additional role of the long head in stabilizing the extension/adduction moments of

the hip and the constraint imposed on the short head by the knee abduction moment represent

a reasonable explanation of the observed activation. The paramountcy of the medial hamstring

is thought to play a key role in managing medial knee opening, thereby enhancing overall joint

stability to counter the predominant abduction moments [81, 93]. Even with the considerable

flexion moments on the knee in all simulated cases, higher activity was computed in the gas-

trocnemius components, with a larger load on the medial gastrocnemius (MG) components

than the lateral gastrocnemius (LG) (Fig 3). The gastrocnemius’ heightened activity was associ-

ated with the increased ankle dorsiflexion moment at simulated instances (Fig 2). To counter-

balance this antagonistic activity, supplementary forces were calculated in the quadriceps,

predominantly borne by the vastus components. Except for the hamstring muscle, greater

drop landing heights were usually characterized by larger muscle contraction and cocontrac-

tion degrees via superficial electromyography (EMG) measurements [99]. The optimized mus-

cle loads (trends) were evaluated with the previously reported EMG measurements

(normalized) [96, 99]. Overall, the computed predictions matched the observed trends in abso-

lute terms. Nonetheless, the estimated muscle forces in the hamstring were consistently greater

than the measurements at higher drop landing heights, likely due to the incorporation of deep

components in our finite element model. Additionally, the potential errors associated with

EMG measurements in larger muscles, along with any attempts to map normalized magni-

tudes (%EMG) to muscle load, emphasize the need for caution when making such evaluations.

The changes in muscle forces resulting from differences in drop landing height led to rela-

tive changes in predicted nominal stresses on the ligaments. These stresses increased simulta-

neously in the cruciate ligaments (ACL, PCL) with higher balance supported by the ACL. This

stress almost doubled at the supra-physiological loading instance. The remarkably higher

activity in the quadriceps and hamstring muscles and the accompanying augmentation of the

knee flexion rotation may justify the less but unexpected stress observed in the cruciate liga-

ments, especially in the ACL, and hence did not increase the risk of injury. However, earlier

observations reported larger loading on the ACL at a greater height may lead to tissue damage

[109]. This latter was not identified at a specific instance of the landing phase, which may lead

to the possibility of ligament damage before or after the peak loading point of the phase simu-

lated in our investigation. The details of the knee ligament’s function and damage during land-

ing should be well scrutinized in future studies of landing biomechanics for different landing

techniques and heights. The lateral (LPL) and medial (MPL) patellofemoral ligaments were

associated with low nominal stresses, which may be attributed to a relatively minor variation

in the vastus components’ load distribution. A similar variation of ligament loading has been

reported in earlier modeling studies [62, 72].
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The current study estimated contact force in both TF and PF joints. In general, the results

of this analysis revealed a substantial increase in the tibiofemoral force with the increase of the

drop landing height. This augmentation is relative to the considerable rise of the surrounding

muscle loads and their related greater joint axial force. Our predicted contact force is in rea-

sonable agreement with previous studies in the literature [96, 99]. At low landing heights, the

lateral compartment bears the majority of the load transferred via the knee joint. However,

with increased landing height, this contribution shifts more towards the medial side. The seg-

ment of the force transferred via menisci is relatively low in all simulated cases, with an average

of 39%. Consistent with the alterations in contact loading, an increase in landing height

resulted in greater contact stress being experienced by the medial plateau, accompanied by an

anterior shift in the center of the contact (Fig 6). The anterior migration of distribution was

due to the increased quadriceps activity. This activity has been recognized as the main deceler-

ator during the landing phase, leading to anterior shear force, considered the major contribut-

ing factor to anterior tibia translation [68]. Furthermore, a distinct elevation in patellofemoral

cartilage stress was computed with the increase in landing height. The stress on this joint is the

outcome of the drastic augmentation of the quadriceps and the patellofemoral tendon forces.

Our predicted contact stresses were much lower than the earlier computational study of Maki-

nejad et al., [110]. The observed differences in the applied boundary conditions and the prop-

erties of the assigned materials to the knee soft tissues can explain this discrepancy in the

predicted results. In other words, unlike our proposed model, in their investigation, the

absence of a realistic scheme connecting different scales simultaneously from joint kinematics/

kinetics to geometry and an accurate anisotropic representation of the tissues’ behaviors may

contribute to the substantial increase of the computed cartilage and meniscus stresses [110],

since these parameters were considered as an important damper of lower extremity joints

loading [4]. Finally, at the supra-physiological loading scenario (landing height = 126 cm), the

damage distribution in collagen fibrils started at the anterior-posterior direction and then

slightly propagated into the fibrils’ medial-lateral direction in the superficial layer. The damage

is eventually expressed in the upper layer of the anterior-medial region of the TF joint. In the

PF joint, the damage initiation was also located on the superficial layers on the lateral side near

the lateral patellofemoral ligament junction. These results indicated that failure generally origi-

nated at the upper layers of the articular cartilage. Identifying these properties (damage initia-

tion and propagation) may inform the interest in biological repair and resurfacing cartilage

defects [111–114].

Results in the current work should be considered with a few limiting assumptions. The

characterization of the proteoglycan network (matrix) failure was not considered. However, it

remains to be seen if including a hybrid model of damage (fibril-matrix) will lead to different

mechanical behavior. This study used a single model to represent a population with varying

bone structures due to age and gender differences [115–117]. While subject-specific models

are considered the gold standard for capturing individual variability in bone structure and

material behavior, creating such models can be complicated and time-consuming [118]. It

may require access to specialized equipment and data sources such as MRI or CT scans. There-

fore, the choice to use a single model was made based on available resources and timeline con-

straints. It is worth noting, however, that the model used in this study was validated and cross-

verified to ensure the ability to produce physiologically acceptable results [18, 24, 25, 119].

While some uncertainty may still exist in its prediction, this process helps create confidence in

the model’s accuracy. Co-activity in muscle exertions was not considered. A wide range of ages

in regression analyses was considered, which may introduce confounding factors, especially

the data from individuals aged 14, still in the stage of skeletal development. However, it is

worth noting that the number of studies that included subjects aged 14 was very low, appearing
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in just 2 of the 42 investigations considered in our analyses [90, 91]. Additionally, these studies

analyzed drop landing data collected from female basketball players whose anthropometry was

close to the normal female average (F; body mass = 61.9 kg, stature = 173.5 m) [120]. There-

fore, their inclusion in the regression model would have had a minor impact on the overall

results. Ultimately, the kinematics-kinetics measurements utilized as input data for our model

may significantly impact the present findings and conclusions. Even with the high variability

of the reported data treating lower extremity kinematics in earlier landing analysis investiga-

tions, the wide range of the considered studies during this investigation may generalize the

predicted results to a certain extent. Finally, this study also acknowledges the limitation linked

to the assigned materials properties of the cartilage matrix from Sajjadenian et al. [39]. This

choice was based on the reported equivalence between short-time biphasic and incompressible

hyperelastic material responses [4, 121–123], where the high incompressibility level allowed

for the utilization of biphasic material properties of the non-fibril parts of the cartilage, specifi-

cally for transient response analysis. However, it should be noted that this choice may affect

the accuracy of the predicted results, particularly since the osmotic pressure parameters were

treated separately from the non-fibril parts of the cartilage in the considered reference [39].

In summary, this investigation provided an engineering framework for identifying the

interaction between changes in lower extremity aggregate kinematics and kinetics during drop

landing and its associated alterations of knee soft tissues’ basic mechanical behavior. This

work allowed us to successfully understand micro cartilage injury due to excessive loading that

could lead to acute and focal collapse. If not treated, these focal damages can develop into full-

blown clinical OA. Hence, knowing the level of loading that would lead to soft tissue micro-

trauma can play an important role in limiting the injuries related to the high physical demands

of certain services and provides a foundation to explain the increased prevalence of the painful

joint disease.
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